Resonance

In physics, resonance is a phenomenon in which a vibrating system or external force drives another system to oscillate with greater amplitude at specific frequencies.

Frequencies at which the response amplitude is a relative maximum are known as the system’s resonant frequencies or resonance frequencies. At resonant frequencies, small periodic driving forces have the ability to produce large amplitude oscillations, due to the storage of vibrational energy.

Resonance occurs when a system is able to store and easily transfer energy between two or more different storage modes (such as kinetic energy and potential energy in the case of a simple pendulum). However, there are some losses from cycle to cycle, called damping. When damping is small, the resonant frequency is approximately equal to the natural frequency of the system, which is a frequency of unforced vibrations. Some systems have multiple, distinct, resonant frequencies.

Resonance phenomena occur with all types of vibrations or waves: there is mechanical resonance, acoustic resonance, electromagnetic resonance, nuclear magnetic resonance (NMR), electron spin resonance (ESR) and resonance of quantum wave functions. Resonant systems can be used to generate vibrations of a specific frequency (e.g., musical instruments), or pick out specific frequencies from a complex vibration containing many frequencies (e.g., filters).

The term resonance (from Latin resonantia, ‘echo’, from resonare, ‘resound’) originates from the field of acoustics, particularly observed in musical instruments, e.g., when strings started to vibrate and to produce sound without direct excitation by the player.

The name of the musical note “Re” in the solfège scale may come from the word resonare, as it appears in a religious anthem for John the Baptist in Latin. This was due to the naming of musical notes by the Italian medieval scholar Guido of Arezzo.

wiki